Planning with Complex Actions

Sheila McIlraith and Ronald Fadel

Knowledge Systems Laboratory
Department of Computer Science
Stanford University
Primitive vs. Complex Actions

Primitive Actions

- Non-decomposable actions
- Characterized in terms of preconditions and (conditional) effects

Complex Actions

- Compositions of primitive (or complex) actions
- Compositions generally in terms of procedural programming language constructs (e.g., if-then-else, sequence, etc.)

E.g.,

\[
\text{move}(\text{obj,orig,dest}) \equiv \text{pickup}(\text{obj,orig}); \text{putdown}(\text{obj,dest})
\]

\[
\text{gotoAirpt}(\text{loc}) \equiv \begin{cases}
\text{shuttle}(\text{Univ,PA}); \text{train}(\text{PA,MB}); \text{shuttle}(\text{MB,SFO}) & \text{if } \text{loc}\text{=Univ} \\
\text{taxi}(\text{loc,SFO}) & \text{else}
\end{cases}
\]

endif
Motivation

1. Automated Composition of Web Services.
Automated Composition of Web Services

Web Services are Web-accessible programs and devices.
Automated Composition of Web Services

✓ Web Services are Web-accessible programs and devices.

➢ Web services can be conceived as primitive and complex actions.

E.g.,

Primitive Action/Service:
 `getWeather`
 preconditions: `know(cityname(y))`
 effects: `know(weather(y))`

Complex Action/Service:
 `buyAirTicket(x) ≜ locateFlight(x); if available(x) ∧ okPrice(x) then provideCustInfo(x); payTicket(x) endif`
Automated Composition of Web Services

✔ Web Services are Web-accessible programs and devices.

✔ Web services can be conceived as primitive and complex actions.

➤ Web service composition can be conceived as program composition, or, in a restricted form, as *planning with complex actions*.
Motivation

1. Automated Composition of Web Services.

2. Improving the Efficiency of Planning
 (by representing useful plan segments as complex actions and planning with these segments as primitive building blocks).
Planning with Complex Actions

Objective:
Use operator-based planning formalisms (e.g., STRIPS, SitCalc w/ deductive plan synthesis, TALPlan, FF, SModels, etc.) to plan using complex actions as the primitive building blocks of a plan.

Challenge:
Complex actions are not represented as operators. How do we represent them and how do we plan with them?

Approach:
• compile complex actions in T into new primitive actions in new theory, T'
• plan in new theory, T'
• extract primitive action plan in T from “complex action plan” in T'
Planning with Complex Actions

Related to:

• ABStrips [Sacerdoti, 74]
• macro-operators [Fikes, Hart, Nilsson, 72], [Korf, 87]
• HTN planning [Erol, Hendler, Nau, 94]
• Encoding planning constraints in p.o. planning [Baioletti et al., 98]

Contrasted to:

• traditional use of Golog [de Giacomo, et al, 00] [Levesque et al, 97]
• TALPlan [Doherty, Kvarnstrom, 00]
• other planning with domain constraints (see AIPS competition)

All of which use complex actions as advice to constrain search. They do not use complex actions as the building blocks of a plan.
Contributions

- Formal definition of successor situation, preconditions & effects of complex actions
- Automated compilation technique (sit calc & PDDL)
- Planning Methodology
 - SitCalc+deductive synthesis (Soundness and Completeness)
 - Operator-based planner
- Evaluation of Efficiency of Planning
Situation Calculus [Reiter, 01] [McCarthy, 68], etc.

We appeal to the situation calculus to formalize our ideas.

Sorts:
- **Actions**
 - e.g., \(a, \text{locateFlight}(x) \)
- **Situations**
 - e.g., \(s, S_0, \text{do}(\text{locateFlight}(x), s) \)
- **Fluents**
 - e.g., \(\text{ownTicket}(x, \text{do}(a, s)) \)
- **Other**
Situation Calculus [Reiter, 01] [McCarthy, 68], etc.

A situation calculus theory D comprises the following axioms:

$$D = \Sigma \cup D_{S0} \cup D_{una} \cup D_{ap} \cup D_{SS}$$

- domain independent foundational axioms, Σ
- unique names assumptions for actions, D_{una}
- axioms describing the initial situation, D_{S0}
- action precondition axioms, D_{ap}, $\text{Poss}(a,s) \equiv \Pi(x,s)$
 e.g., $\text{Poss}(\text{pickup}(x),s) \equiv \neg \text{holding}(x,s)$
- successor state axioms, D_{SS}, $F(x,s) \equiv \Phi(x,s)$
 e.g., $\text{holding}(x,do(a,s)) \equiv a = \text{pickup}(x) \lor (\text{holding}(x,s) \land (a \neq \text{putdown}(x) \lor a \neq \text{drop}(x)))$
Golog [Levesque et al, 97, De Giacomo et al, 00]

- programming language instructions set = situation calculus actions

- constructs for assembling actions
 - sequence \((\delta_1 ; \delta_2)\)
 - test of truth \(?\phi\)
 - nondeterministic choice between actions \((\delta_1 | \delta_2)\)
 - nondeterministic choice of arguments \(\pi x.\delta\)
 - nondeterministic iteration \(\delta^*\)
 - conditional \(\textbf{if } \phi \textbf{ then } \delta_1 \textbf{ else } \delta_2\)
 - loop \(\textbf{while } \phi \textbf{ do } \delta\)

- complex actions originally characterized are macros that reduce to formulae in situation calculus language, in some later work, complex actions formulated as first-class objects.
E.g., Let δ be a complex action such as

\[
\text{locateFlight}(x); \text{if available}(x) \land \text{okPrice}(x)
\]

\[
\text{then provideCustInfo}(x); \text{payTicket}(x)
\]

\[
\text{endif}
\]

\[
\text{Do}(\delta, s, s')
\]

is an abbreviation

$\text{Do}(\delta, s, s')$ holds whenever s' is a terminating situation following the execution of complex action δ in s.

Each abbreviation is a formula in the situation calculus.

\[
\text{Do}(\alpha, s, s') \equiv \text{Poss}(\alpha[s],s) \land s' = \text{do}(\alpha[s],s)
\]

\[
\text{Do}([\delta_1; \delta_2], s, s') \equiv (\exists s^*). (\text{Do}(\delta_1, s, s^*) \land \text{Do}(\delta_2, s^*, s'))
\]

\[
\text{Do}(\pi x. \delta(x), s, s') \equiv (\exists x). \text{Do}(\delta(x), s, s')
\]

\[
\ldots
\]
E.g., \texttt{locateFlight}(x); \textbf{if} \ \texttt{available}(x) \ \land \ \texttt{okPrice}(x) \ \textbf{then} \\
\hspace{1cm} \texttt{provideCustInfo}(x); \ \texttt{payTicket}(x) \ \textbf{endif}
From Formulae to Action Sequences

Instantiate δ (e.g.,) using theorem proving (deductive synthesis).

\[D \models \exists s. \text{Do}(\delta, S_0, s) \]

“When the complex action δ is executed starting in S_0 it legally terminates in situation s. ”

The action theory D imposes constraints on the evaluation of the program.

Theorem proving returns a binding for the situation variable s. E.g., $s = \text{do}(a_3, \text{do}(a_2, \text{do}(a_1, S_0)))$

The binding is a sequence of services that realizes the complex action.
E.g., `locateFlight(x); if available(x) \land okPrice(x) \textbf{then} provideCustInfo(x); payTicket(x) \textbf{endif}`

\[
D \models \exists s. Do(\delta, S_0, s)
\]
Contributions

- Formal definition of successor situation, preconditions & effects of complex actions
- Automated compilation technique (sit calc & PDDL)
- Planning Methodology
 - SitCalc+deductive synthesis (Soundness and Completeness)
 - Operator-based planner
- Evaluation of Efficiency of Planning
Simple Running Example

Complex action δ is

$$\text{pickup}(x); \text{if } \text{hot}(x) \text{ then } \text{drop}(x) \text{ else } \text{putdown}(x) \text{ endif}$$
Situation Resulting from Performing δ in s

Introduce the term $do_{ca}(\delta, s)$ to denote the situation resulting from performing δ in s.

```
pickup(x); if hot(x) then drop(x) else putdown(x) endif 
```

The interpretation of $do_{ca}(\delta, s)$ is constrained by the following axioms which we add to D,

$$Do(\delta, S_0, do_{ca}(\delta, s)) \lor (\neg \exists s'. Do(\delta, S_0, s') \land \neg executable(do_{ca}(\delta, s)))$$

Recall

$executable(s)$ is defined as $\forall a, s^*. do(a, s^*) \subseteq s \rightarrow Poss(a, s^*)$
Preconditions for Complex Action, δ

Introduce the term $Poss_{ca}(\delta, s)$ to denote the preconditions for δ.

Its definition is captured tidily by the inductive definition of Do. I.e.,

$$Poss_{ca}(\delta, s) \equiv \exists s'. Do(\delta, S_0, s')$$

E.g.,

$$Poss_{ca}(a_1; a_2, s) \equiv \exists s'. Poss(a_1, s) \land s' = do(a_1, s) \land Poss(a_2, s')$$
Preconditions for Complex Action, δ

$\text{Poss}_{ca}(\delta, s) \equiv \exists s'. \text{Do}(\delta, S_0, s')$

E.g.,

- $\neg \text{holding}(x, s)$
- $\text{holding}(x, s)$

Diagram:

- $s \xrightarrow{\text{pickup}(x)}$ pickup
- $s \xrightarrow{\text{putdown}(x)}$ putdown
- $s \xrightarrow{\text{drop}(x)}$ drop
- $s \xrightarrow{\text{holding}(x, s)}$ holding

E.g.,

- $\neg \text{holding}(x, s)$
- $\text{holding}(x, s)$
Preconditions for Complex Action, δ

$$Poss_{ca}(\delta, s) \equiv \exists s'. Do(\delta, S_0, s')$$

E.g.,

$$\neg holding(x,s) \quad holding(x,s)$$

$$s \quad pickup(x) \quad drop(x) \quad putdown(x)$$

$$Poss_{ca}(\delta, s) \equiv Poss(pickup(x),s) \land s'' = do(pickup(x),s) \land$$
$$((hot(x,s'') \land Poss(drop(x),s'') \land s' = do(drop(x),s''))$$
$$\lor (\neg hot(x,s'') \land Poss(putdown(x),s'') \land s' = do(putdown(x),s'')))$$
Preconditions for Complex Action, δ

\[
\text{Poss}_{ca}(\delta, s) \equiv \exists s'. \text{Do}(\delta, S_0, s')
\]

E.g.,

\[
\neg \text{holding}(x, s) \quad \text{holding}(x, s)
\]

\[
\begin{align*}
\text{Poss}_{ca}(\delta, s) & \equiv \exists s', s''. \text{Poss(pickup}(x), s) \land \\
& \quad ((\text{hot}(x, s'') \land \text{Poss(drop}(x), s'')) \land s' = \text{do(drop}(x), s'')) \\
& \quad \lor (\neg \text{hot}(x, s'') \land \text{Poss(putdown}(x), s'') \land s' = \text{do(putdown}(x), s''))
\end{align*}
\]

\[
= \exists s', s''. \neg \text{holding}(x, s) \land s'' = \text{do(pickup}(x), s) \land \\
\quad ((\text{hot}(x, s'') \land \text{holding}(x, s'')) \land s' = \text{do(drop}(x), s'')) \\
\quad \lor (\neg \text{hot}(x, s'') \land \text{holding}(x, s'') \land s' = \text{do(putdown}(x), s''))
\]
Make it Markovian: Action Precondition Axioms

Action Precondition Axioms, D_{caap}, one for every δ

$$Poss_{ca}(\delta, s) \equiv R^s[\exists s'. Do(\delta, S_0, s')]$$

where R^s is a regression rewriting operator relative to s, using D_{SS}

E.g. (continued),

$$Poss_{ca}(\delta, s) \equiv R^s[\exists s', s''. Poss(pickup(x),s) \land s'' = do(pickup(x),s) \land (hot(x,s'') \land Poss(drop(x),s'') \land s' = do(drop(x),s'')) \lor (\neg hot(x,s'') \land Poss(putdown(x),s'') \land s' = do(putdown(x),s''))]$$

$$= \neg holding(x,s)$$
Intermediate Successor State Axioms for δ

(Pseudo/Intermediate) successor state axioms can be defined as follows

\[
\text{Poss}_{ca}(\delta, s) \rightarrow [F(x, \text{do}_{ca}(\delta, s)) \equiv \Phi^*(x, \delta, s)]
\]

where \(\Phi^*(x,s) = \exists s'. \text{Do}(\delta, S_0, s') \land F(x,s') \land s' = F(\text{do}_{ca}(\delta, s))\)

E.g., Complex action δ is

pickup(x); if hot(x) then drop(x) else putdown(x) endif

\[
\text{Poss}_{ca}(\delta, s) \rightarrow [\text{broken}(x, \text{do}_{ca}(\delta, s)) \equiv
\exists s', s''. \text{Poss}(\text{pickup}(x), s) \land s'' = \text{do}(\text{pickup}(x), s) \land
((\text{hot}(x,s'') \land \text{Poss}(\text{drop}(x), s'') \land s' = \text{do}(\text{drop}(x), s''))
\lor (\neg \text{hot}(x,s'') \land \text{Poss}(\text{putdown}(x), s'') \land s' = \text{do}(\text{putdown}(x), s'')))
\land \text{broken}(x,s') \land \text{do}_{ca}(\delta, s) = s']
\]
Make it Markovian: Successor State Axioms

Successor State Axioms, D_{cass}, one for every fluent-δ pair

$$\text{Poss}_{ca}(\delta, s) \rightarrow [F(x, \text{do}_{ca}(\delta, s)) \equiv R^s[\Phi^*(x, \delta, s)]$$

where R^s is a regression rewriting operator relative to s, using D_{ss}.

E.g., Complex action δ is

```
pickup(x); if hot(x) then drop(x) else putdown(x) endif
```

$$\text{Poss}_{ca}(\delta, s) \rightarrow [\text{broken}(x, \text{do}_{ca}(\delta, s)) \equiv$$

$$R^s[\exists s', s''. \text{Poss}(\text{pickup}(x), s) \land s'' = \text{do}(\text{pickup}(x), s) \land$$

$$((\text{hot}(x, s'') \land \text{Poss}(\text{drop}(x), s'') \land s'' = \text{do}(\text{drop}(x), s''))$$

$$\lor (\neg \text{hot}(x, s'') \land \text{Poss}(\text{putdown}(x), s'') \land s'' = \text{do}(\text{putdown}(x), s''))$$

$$\land \text{broken}(x, s') \land \text{do}_{ca}(\delta, s) = s']$$
Make it Markovian: Successor State Axioms

\[\text{Poss}_{ca}(\delta, s) \rightarrow [F(x, do_{ca}(\delta, s)) \equiv R^s[\Phi^*(x, \delta, s)]] \]

E.g. (continued), Complex action \(\delta \) is

\[\text{pickup}(x); \text{if} \ hot(x) \text{ then drop}(x) \text{ else putdown}(x) \text{ endif} \]

\[\text{Poss}_{ca}(\delta, s) \rightarrow [\text{broken}(x, do_{ca}(\delta, s)) \equiv \neg \text{holding}(x,s) \land \]
\[(((hot(x,s) \land do_{ca}(\delta, s) = do(\text{drop}(x),do(\text{pickup}(x),s)))
\lor
\[(\neg hot(x,s) \land \text{broken}(x,s) \land do_{ca}(\delta, s) = do(\text{putdown}(x),do(\text{pickup}(x),s)))] \]

Note that the successor state axiom embeds the trajectories upon which the truth of the fluent \(F \) is predicate. Critical for nondeterministic actions!
Effect Axioms for Complex Actions

Effect Axioms, D_{caef}, up to one positive and one negative for every fluent-δ pair

\[
\begin{align*}
\text{Poss}_{ca}(\delta, s) \land \varepsilon^+(x,s) & \rightarrow F(x, \text{do}_{ca}(\delta, s)) \\
\text{Poss}_{ca}(\delta, s) \land \varepsilon^-(x,s) & \rightarrow \neg F(x, \text{do}_{ca}(\delta, s))
\end{align*}
\]

Proposition:

\[D \cup D_{caap} \cup D_{caSS} \models D_{caef} \]
Contributions

• Formal definition of successor situation, preconditions & effects of complex actions

• Automated compilation technique (sit calc & PDDL)
 PDDL + complex action description → new PDDL theory
 (semantically justified by formal definitions)

• Planning Methodology
 • SitCalc+deductive synthesis (Soundness and Completeness)
 • Operator-based planner

• Evaluation of Efficiency of Planning
Contributions

• Formal definition of successor situation, preconditions & effects of complex actions
• Automated compilation technique (sit calc & PDDL)
• Planning Methodology
 • SitCalc+deductive synthesis (Soundness and Completeness)
 • Operator-based planner
• Evaluation of Efficiency of Planning
Planning Methodology

Given:
• primitive action theory T_A with primitive actions A,
• set of complex actions Δ_A constructed from primitive actions A

1. **COMPILE**[T_A, Δ_A] \rightarrow T_A' (A' is new set of primitive actions)

2. **PLAN**[T_A', goal] \rightarrow plan[A']

3. **REWRITE**[plan[A']] \rightarrow plan[A, Δ_A]

4. **EXPAND**[plan[A, Δ_A], T_A] \rightarrow plan[A]

Observe: Steps 3,4 not necessary for Web Service composition
Planning Methodology: Situation Calculus

1. **COMPILE**\[T_A, \Delta_A]\rightarrow T_A' \ (A' \text{ is new set of primitive actions})

 \text{<see details in paper>}

2. **PLAN**\[T_A', \text{goal}\] \rightarrow \text{plan}[A']

 Deductive plan synthesis

 \[T_A' \vdash \exists s. \text{Goal}(s)\]

3. **REWRITE**[\text{plan}[A']]) \rightarrow \text{plan}[A, \Delta_A]

 \text{<trivial, see details in paper>}

2. **EXPAND**[\text{plan}[A, \Delta_A], T_A] \rightarrow \text{plan}[A]

 - Rewrite plan: \(a_1, \delta_1, a_2, a_3, \delta_2, \ldots\) as a Golog sequence, \(\delta_G\)

 E.g., \(\delta_G\) is \(a_1; \delta_1; a_2; a_3; \delta_2\ldots\)

 - Generate expansion using Golog interpreter

 \[T_A \vdash \exists s. \text{Do}(\delta_G, s, s')\]

 - Rewrite sequence of actions from binding for \(s'\)
Planning Methodology: Situation Calculus

Theorem (informally stated):
Planning in T_A' is sound and complete with respect to planning in T_A. I.e., every plan our approach finds is also a plan in the original primitive action theory, and vice versa.
Planning Methodology: ADL-PDDL Planners

1. **COMPILE**[T_A, Δ_A] → T_A' (A' is new set of primitive actions)
 PDDL translator, based on theory in this paper

2. **PLAN**[T_A', goal] → plan[A']
 * Generate a plan in T_A' using an ADL-PDDL planner*

3. **REWRITE**[plan[A']] → plan[A, Δ_A]
 trivial, see details in paper

4. **EXPAND**[plan[A, Δ_A], T_A] → plan[A]
 straightforward
Recall: Motivation

1. Automated Composition of Web Services.

2. Improving the Efficiency of Planning
 (by representing useful plan segments as complex actions and planning with these segments as primitive building blocks).
Contributions

• Formal definition of successor situation, preconditions & effects of complex actions

• Automated compilation technique (sit calc & PDDL)
 PDDL + complex action description \rightarrow new PDDL theory
 (semantically justified by formal definitions)

• Planning Methodology
 • SitCalc+deductive synthesis (Soundness and Completeness)
 • Operator-based planner

• Evaluation of Efficiency of Planning
Efficiency of Complex Action Planning

Compiling:
- offline & amortized over multiple plans
 (polynomial in no. of primitive actions).

Expansion:
- linear in the length of the plan & not always relevant.

Planning dominates:
 i) Complex action operators have more complex preconditions
 and effects than primitive actions.
 ii) the size of the search space will change

Search Space:
Consider breadth-first search, finite horizon planner. n ground actions, shortest successful path is of length l, so the search space is O(n^l)
Efficiency of Complex Action Planning

Compiling can be done offline and amortized over multiple plans, but compiling a complex action δ is polynomial in no. of primitive actions.

Expansion is linear in the length of the plan.

Planning dominates
i) Complex action operators have more complex preconditions and effects than primitive actions (linear slow down)
ii) the size of the search space will be change (critical)

Search Space:
Consider breadth-first search, finite horizon planner. n ground actions, shortest successful path is of length l, so the search space is $O(n^l)$
Consider the search space of a breadth-first search, finite horizon planner with n primitive actions.

\[S_0 \]

n primitive actions
Search Space (cont.)

\[S_0 \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

shortest plan of length \(l \)
Search Space (cont.)

- S_0
- n primitive actions
- shortest plan of length l
- search space $O(n^l)$
Search Space w/ “Complex Actions”

Add d new primitive actions representing the complex actions.
Search Space w/ “Complex Actions”

Assume the use of complex actions reduce plan length by 1/k

S₀

... ...

shortest plan of length l/k
Search Space w/ “Complex Actions”

Assume the use of complex actions reduce plan length by $1/k$

$n+d$ primitive actions

shortest plan of length l/k

search space $O((n+d)^{(l/k)})$
Efficiency of Complex Action Planning

Planning with complex actions improves efficiency when the increase in the number of actions is compensated for by the decrease in the length of the plan. I.e., if \(n_k - (n+d) > 0 \)

More generally, complex action planning improves efficiency when:

- \(n_k - (n+d) > 0 \)
- complex actions are subplans in the shortest plan
- complex actions remove subgoal conflicts

(reduces need for backtracking, enables fast hill-climbing techniques)
Illustrative Experiments

Tested the effectiveness of complex action planning on the AIPS briefcase domain, using FF [Hoffmann, Nebel, 01].

Experiments:
- increase no. of locations, packages
- with/without complex actions

New Complex Actions
- Move-object MO(locIniti, locObj, Obj, locFinal)
- LOC(loc-bc,loc)

<table>
<thead>
<tr>
<th></th>
<th>#loc:5,#pack:20</th>
<th>#loc:6,#pack:30</th>
<th>#loc:7,#pack:42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefcase</td>
<td>5549(1.39)</td>
<td>201,006(2261)</td>
<td>? (>40)</td>
</tr>
<tr>
<td>Briefcase+MO</td>
<td>859 (11.83)</td>
<td>2345 (201.47)</td>
<td>5195 (2211)</td>
</tr>
<tr>
<td>Briefcase+LOC</td>
<td>75 (.08)</td>
<td>139 (.27)</td>
<td>260 (.85)</td>
</tr>
</tbody>
</table>

No. of nodes visited and time of run (seconds)*

* Experiments run on Sun Sparc v9, 2x 750MHz, 4GB memory

McIlraith - Stanford University 04/21/2002
Summary: Planning with Complex Actions

Motivation:
1. Automated Web Service Composition
2. Improve the Efficiency of Planning

Contributions:
- Formal definition of successor situation, preconditions & effects of complex actions
- Automated compilation techniques (sit calc & PDDL)
- Planning Methodology
 - SitCalc+deductive synthesis (Soundness and Completeness)
 - Operator-based planner
- Illustrated improvement in the efficiency of planning. Analysis bears out conditions under which this is true.