OKBC
A Protocol For
Knowledge Base Interoperation

Adam Farquhar
Richard Fikes
James Rice
Vinay Chaudhri
Peter Karp

Exchanging Knowledge - Problems

- Knowledge Representation Systems (KRS) vary:
 - Different levels of expressiveness
 - Different degrees of reification
 - Different inference capabilities
- Knowledge represented in one KRS has not been usable in another
- Tools that work for one KRS will not work for others
- Effort is wasted!
Exchanging Knowledge - Approaches

- A Knowledge Interchange Format
 - KIF specifies a declarative method for exchange
 - KIF does not address the procedural aspects
 - Open a KB, Save a KB, Create a class, Delete a class, ...

- An open API
 - OKBC specifies a protocol for KRS interoperation
 - OKBC supports a client-server model for interaction
 - OKBC provides transparent network access
 - OKBC provides an object-oriented view of a KRS

KRS Variation - Expressiveness

- Ocelot
 - A simple frame system with classes, individuals, slots, a limited number of facets

- CLIPS
 - An object system with production rules

- Classic
 - An elegant classifier system with a substantial set of constraints (e.g., value-type, cardinality)

- Loom
 - An expressive classifier system with a full assertion language

- ATP
 - A full FOL theorem prover with limited axiom schema

- Ontolingua
 - A full KIF representation system
Knowledge Model

- **Universe of discourse**
- **Partition into**
 - Classes
 - Individuals

Classes

<table>
<thead>
<tr>
<th>Relation</th>
<th>Value-type</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Employee</td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>{x \mid x<10}</td>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>{1 2 3}</td>
<td>Slots</td>
<td></td>
</tr>
</tbody>
</table>

Individuals

<table>
<thead>
<tr>
<th>Emp27</th>
<th>Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>4.27</td>
</tr>
<tr>
<td>"hello"</td>
<td></td>
</tr>
</tbody>
</table>

Relationships

- **Slots**
- **Facets**
KRS Design

- KRS distinguish a set of frames
 - Objects about which assertions may be made
- What constitutes a frame varies widely!
- Restrictions are arbitrary

Dealing with Variation

- What should these OKBC operations return?
 - Get-kb-frames
 - Get-kb-classes
 - Get-kb-individuals
 - Get-kb-slots
 - Get-kb-facets
- What guarantees can OKBC provide?
 - Frames _ classes
 - Frames _ slots
- Under what conditions could guarantees be stronger?
Dealing with Variation - Names

- KRS use different names for concepts
 - The most general class: thing, object, all, any, ...
 - Value restriction: value-type, slot-value-type, type, ...
- Applications must portably refer to these common objects
- OKBC defines standard names
 - :thing, :value-type, :inverse, :cardinality, ...
 - If coerce-to-frame(:thing) returns a frame, then it must have the correct meaning
 - A KRS need not provide any standard names

Dealing with Variation - Inference

- KRS vary widely in inference ability
 - Simple lookup
 - Taxonomic reasoning
 - Full FOL theorem proving
 - Forward chaining
- Control of inference
 - Specify inference level: direct, taxonomic, all-inferable
 - KRSs must return at least those values
- Understanding results
 - Operations return additional information
 - If the answer is complete
 - All Universities
 - All Universities I had time to find
 - All Universities I can find
 - If exactly the requested inferences were performed
Dealing with Variation - Types

- Procedural tests allow clients to be more robust
 - If age-of is a slot on human, then slot-p(age-of) returns True
 - Facets on age-of for human can be asserted
 - If frame-p(age-of) returns True, then age-of is also a frame
 - Properties of age-of can be asserted
- OKBC cannot legislate that all slots are frames