
12

Configuration
Deborah L. McGuinness

Abstract

Description logics are used to solve a wide variety of problems with configuration
applications being some of the largest and longest-lived. There is concrete, com-
mercial evidence that shows that description logic-based configurators have been
successfully fielded for over a decade. Additionally, it appears that configuration
applications have a number of characteristics that make them well-suited to descrip-
tion logic-based solutions. This chapter will introduce the problem of configuration,
describe some requirements of configuration applications that make them candidates
for description logic-based solutions, show examples of these requirements in a con-
figuration example, and introduce the largest and longest lived family of description
logic-based configurators.

12.1 Introduction

In order to solve a configuration problem, a configurator (human or machine) must
find a set of components that fit together to solve the problem specification. Typi-
cally, that means the answer will be a parts list that contains a set of components
that work together and that the system comprised of the components meets the
specification. This task can be relatively simple, such as choosing stereo compo-
nents in order to create a home stereo system. The problem can also be extremely
complex such as choosing the thousands of components that must work together
in order to build complicated telecommunications equipment such as cross-connect
devices or switches.

One important factor that makes configuration challenging is that making a choice
for one component typically generates constraints on other components as well. For
example, if a customer chooses a receiver that only supports up to four speakers,
then she may not conveniently support a surround sound system with a subwoofer
(since this would require more than four speakers).

397



398 D. L. McGuinness

Configuration continues to have strong interest in the academic and commercial
communities. It has been a prominent area in artificial intelligence at least since the
R1/XCON [McDermott, 1982] work on configuring computer systems. Since then,
many configuration systems have been built in domains including communication
networks, trucks, cars, operating systems, buildings, furniture layout, and even wine
properties to match a meal description. Today, there are active mailing lists, work-
shops and conferences (such as the configuration workshops at IJCAI 2001 [Soininen
et al., 2001], AAAI’99 [Faltings et al., 1999], and the Fall Symposium Workshop
on Configuration [Faltings and Freuder, 1996]), special issues of journals (such as
IEEE Intelligent Systems [Faltings and Freuder, 1998] and Artificial Intelligence for
Engineering Design, Analysis and Manufacturing [Darr et al., 1998]), and research
groups at a number of universities and companies. Approaches include constraints,
expert systems, model-based reasoning, and case-based reasoning as well as descrip-
tion logics.

Configuration is an important and growing commercial concern. There are a
number of companies dedicated to configuration such as Trilogy, Calico, etc. Other
companies in broader markets such as the enterprise integration software compa-
nies, Baan and SAP, have a major emphasis in configuration. Companies that sell
complicated products, such as computers, are providing their own configurators
(e.g., the Dell personal computer online configurators). There are spin off compa-
nies of general configuration companies that are aiming at particular domain areas,
such as PCOrder (a spinoff of Trilogy focusing on personal computer configuration).
There are also some domain-oriented companies that include configuration as a ma-
jor component such as CarsDirect’s configuration of United States consumer car
orders.

Although the commercial configuration market may appear to be a recent event
since it has been exploding recently, it does have at least a decade of history. Trilogy,
for example, one of the earlier companies focusing primarily on configuration, was
founded in 1989. Forrester research reports that the configuration market was valued
at eight billion dollars in 1997 and it predicts that the market will grow to 327
billion in 2002. Configuration is also seen as important by companies not originally
classifying themselves as ”configuration companies”. In a study of fifty eCommerce
executives from top firms in the business to business and business to consumer
space, Forrester Research found that search and configurators were considered the
two tools most critical for customer support [Koetzle et al., 2001].

The description logic community has been addressing configuration needs for
over a decade as well. Owsnicki-Klewe [1988] presented a view of configuration as
a consistency maintenance task for description logics and AT&T independently be-
gan work in 1988 on its family of configurators for telecommunications equipment
[Wright et al., 1993; McGuinness et al., 1995; McGuinness and Wright, 1998b;



Configuration 399

1998a]. Similarly Ford Motor Company has had a description logic-based config-
urator [Rychtyckyj, 1996] in the field for over 10 years. Others in the description
logic area have explored description logics for configuration as well, e.g., [Buchheit
et al., 1994c; Kessel et al., 1995].

12.2 Configuration description and requirements

In this chapter, we will be considering large scale configuration problems. If one
only has a small number of constraints to satisfy and a small number of pos-
sible component choices, then any somewhat reasonable solution will work. If
however, the final product is complicated and there are thousands of choices and
constraints, then there is more need for a well suited solution. We will consider
the generic configuration problem where there is a complex artifact being assem-
bled from components. Potentially the components have subcomponents, thus
the artifact may be modular or hierarchical in nature. Also, each of the com-
ponents typically has a number of properties, such as power restrictions, con-
nections to other components, etc., thus components may be tightly intercon-
nected. If one looks at modern configuration descriptions [Fleischanderl et al., 1998;
Juengst and Heinrich, 1998], one can see only large, interconnected, tightly con-
strained, complex systems.

The input description for the configuration problems we will consider will be a
specification of a complex, probably highly interconnected system. The input should
be able to be input incrementally by a user as well as being able to be uploaded
from sales programs. The input specification may be:

• incomplete
• ambiguous
• incrementally evolving
• granular to different levels of specificity
• inconsistent
• entered in any arbitrary order
• interconnected
• nested with complex structure

The output for the system, in its simplest form, will be some kind of parts list.
The parts list may be organized hierarchically so that there is a parts list of high
level components (such as bays in switching systems or speaker sets in home theatre
systems) as well as a detailed parts list of the individual components. In this chapter,
we will only address configuration and not the related area of parts layout.

The output of the system should be:

• correct



400 D. L. McGuinness

• complete
• consistent (with respect to other parts, preferences, pre-existing components in

the customer’s environment)
• modifiable
• understandable / explainable
• capable of being queried
• interconnected and interoperable with related data

The configurator needs to accept the problem input along with any previously
entered domain information concerning valid configurations. It must then check
the constraints it has (calculating the constraints that are implicit in the input data
from the input and background information) in order to start building a parts list.
It may find that a complete and correct parts list may not be built from the given
input. In actuality, it is common for the problem specification to be either over-
constrained (i.e., contain a contradiction such as “I want a pair of speakers that is
of the highest quality available yet I do not want to pay more than fifty dollars for
them”) or underconstrained (i.e., “I want to buy a high quality stereo system”).
In the first case, the configurator needs to identify the source of the conflicting
information and determine (probably along with user input) which conflicting con-
straint(s) to relax. In the second case, the configurator needs either to solicit more
specific information from the user, or to generate a list of possible configurations, or
both. If the configurator makes arbitrary choices for the user (e.g., it chooses some
receiver for the stereo system yet there were many possible choices), then it needs
to make it possible for the user to change the arbitrary choices and also to find out
which choices were arbitrary and which choices were mandated by constraints. Ad-
ditionally it needs to let the user input partial additional input that would further
constrain the choices.

The configurator also needs to accept information from multiple data sources.
There will be a number of databases with which a configurator may need to interact.
Typically, there will be databases of parts and prices, other databases of parts
and availability, and possibly many other databases with user information or just
information about different product families. It is likely that information (such
as pricing and availability) will change frequently. Also, there will be information
concerning what parts are compatible together and how the choice of one part
constrains the choices of other parts. These might be considered the configuration
rules. These rules might not change on a frequent basis, however modifications are
typically necessary. The rules may come from multiple sources as well. They may
need to be imported from many different source languages and they may need to
be input by people who have no training in computer science, let alone knowledge
representation systems.



Configuration 401

Finally, the system may be long-lived and thus require support and maintenance.
It may be necessary to staff a help desk to help users of the system. The customer
service representatives may know very little about any one individual product for
which they are answering questions (because they are supporting a large number
of products). The technical staff maintaining the individual configurator may not
include people who originally built the system, and over time, it may not even
include people who know much about the product (although they may be quite
capable of researching the product if necessary). Also, the technical staff may need
to generate new configurators for updated or similar products.

We might summarize the requirements from the input, output, and core con-
figurator requirements starting from the requirements presented in one configura-
tor family of applications [McGuinness and Wright, 1998b] and augmenting them
slightly here. A solution methodology should have the following properties:

• object-oriented modeling;
• rule representation, organization, and triggering;
• active inference and knowledge completion;
• explanation, product training, and help desk support;
• ability to handle incrementally evolving specifications;
• extensible schemas;
• reasoning mechanisms that handle incomplete or ambiguous information;
• inconsistency detection, error handling, and retraction;
• modularity;
• maintainability.

This list of needs represents those in many complicated reasoning tasks. Although
we could argue that this general architecture and approach is more broadly applica-
ble, we will limit our discussion to configuration applications. In the next set of sub-
sections, we will describe each of these needs with respect to the task of configuring
a stereo system (based on the configurator demo by AT&T [McGuinness et al., 1995;
1998] and mention how the description logic-based solution met the need. When
useful or necessary, we will mention how the need was addressed in the larger Prose
configurator family.

In the stereo configuration application, the goal was to require the user to en-
ter a small number of constraints concerning the end system and generate a com-
plete, correct, and consistent parts list. The system would accept a large set of
constraints as input as well, however the goal was to reduce the user’s task and
thus require minimal input. The system used the user input along with its ex-
tensive domain knowledge and parts information to determine if the user’s input
specification was consistent. It used the underlying theorem prover within the de-
scription logic system to compute the deductive closure of the input and generated



402 D. L. McGuinness

a more complete input description. User input was solicited on the system qual-
ity (high, medium, or low with associated price ranges) and the typical use (audio
only, home theater only, or combination), and then the application deduced appli-
cable consequences. This typically generated descriptions for 6–20 subcomponents
which restrict properties such as price range, television diagonal, power rating, etc.
A user might then inspect any of the individual components possibly adding fur-
ther requirements to it which may, in turn, cause further constraints to appear on
other components of the system. Also, a user may ask the system to “complete”
the configuration task (even if the user specification was incomplete), completely
specifying each component so that a parts list is generated and an order may be
completed. An online demonstration of the web configurator application is available
at Vassar (http://taylor.cs.vassar.edu/stereo-demo/) and a number of exam-
ples are available in the extended online version of the IJCAI paper [McGuinness
et al., 1995] available at: http://www.research.att.com/sw/tools/classic/tm/
ijcai-95-with-scenario.html.

This application is convenient for illustrating our points since it is small and in a
broadly understandable domain. It is potentially more interesting than some simple
pedagogical examples since it was developed as an application that had representa-
tion and reasoning requirements that were isomorphic to the needs observed in the
Prose family [Wright et al., 1993; McGuinness and Wright, 1998b] of configurators.
The examples in this paper can be seen in more detail in [McGuinness et al., 1995;
1998]

12.2.1 Object-oriented modeling

A system that is being configured may be viewed as a structured object composed
of smaller objects. Even our simple example domain of stereo equipment presents
a natural hierarchy of concept descriptions and instances that have a number of
properties. We have a top level node like ElectricalThing and then have subclasses
of that node such as HomeTheatreSystem and StereoOrVideoComponent. Further,
subclasses of StereoOrVideoEquipment might include Receiver, Speaker, and Televi-
sion. Any particular term may have properties associated with it. For example,
a Television might have a property called diagonal (that must be filled with a pos-
itive integer), another called price (that must be filled with a monetary value),
a repairHistory (that must be filled with one of the following values: {BAD, OK,
GOOD}), a manufacturer (that must be filled with a company), and a height, width,
and depth (all of which must be filled with a positive number). All of the properties
might have cardinality requirements on them. For example, there must be at least
one manufacturer (although possibly more than one manufacturer), there must be
exactly one filler for the diagonal role, etc.



Configuration 403

In the simple examples so far, we have seen a need for number (cardinality) re-
strictions, value restrictions (choosing the type of a filler for a role), roles, and class
hierarchies. Further we should note in the description that the objects are composi-
tional. The value restriction on the manufacturer role is naturally determined to be
a company. Companies themselves might have further properties like headquarter
locations, CEOs, etc. A user might subsequently want to choose speakers made by
companies in the United States and televisions made by companies headquartered
in Japan.

It is argued more extensively elsewhere [McGuinness and Wright, 1998a] and in
this book in Chapter 10 that description logics are convenient modeling tools for
such objects. We can show a simple example of this diagrammatically where a
HomeTheatreSystem inherits a price role with a value restriction of MonetaryUnit.
We might also have a particular HomeTheatreSystem named MY-HTS that is the
system we will be building through the example. It will also have a price role with
some unknown value at the moment. We might also have a subclass of HomeThe-
atreSystem called HighQualSystem. In our simple example, this might be defined
simply as a home theatre system that costs at least 6000 dollars. In a description
logic system, once MY-HTS contains either a price that is over 6000, or contains a
partial description such as “a minimum price of 8000 dollars” that restricts the price
to be greater than 6000, then it can be recognized to be an instance of a HighQual-
System. This kind of automatic recognition and organization of terms based on their
definitions is a convenience for organizing and maintaining partial descriptions and
is arguably one reason that description logics are thought to be particularly useful
for modeling and maintenance of applications that require object-oriented models.

12.2.2 Rule representation

A knowledge base that contains information about active deductions will contain
some sort of rules. Typical large configuration systems will contain many rules.
Also, these rules may change frequently. It is reported that 40% of the rules in
R1 changed yearly. Thus, support for modeling, organizing, and later, maintaining
the rules will be important in large configuration systems. A simple rule may take
the form of “If something is an A, then it is a B”. For example, if something is a
HighQualSystem, then its television is a HighQualTelevision (which has a minimum
price and diagonal value), its speakers are HighQualSpeakers (which have minimum
price restrictions), etc. In fact, in our stereo demo, there are dozens of rules that
fire once a system is determined to be a HighQualSystem. If the minimum price
restriction were ever removed from the specification requirement, we would want
the results of those rules retracted automatically (unless the same results could be
deduced in other ways as well).



404 D. L. McGuinness

A description logic-based system can support modeling of rules described above
in a hierarchical fashion. Rules can be associated at what ever level of the hierarchy
is appropriate. Thus, we might associate minimum price and diagonal for televisions
at the level of a HighQualSystem and we might associate repair-history restrictions
with another concept such as HighReliabilitySystem. If we just wanted to have this
kind of simple rule encoding, one would not have needed to use a separate mech-
anism. If one has an encoding scheme that includes negation and disjunction (or
some other way of encoding an “if-then” rule), as do most of the modern description
logic languages, then one does not need to introduce a separate rule notion. For
example, one might encode a simple if-then relationship such as (or (not High-
ReliabilitySystem) GoodRepairHistory). This states that either something is not a
high reliability system or it has a good repair history, which is typically viewed as
equivalent to ”if something is a high reliability system, then it has a good repair
history”.

The description logic that this example was encoded in (Classic [Borgida et
al., 1989; Brachman et al., 1991; Patel-Schneider et al., 1991; McGuinness and
Patel-Schneider, 1998]) had a rather limited set of constructors and also had the
simple rules introduced above and also more sophisticated rules such as those which
compute role values based on context. In some configuration applications of this
description logic, the more sophisticated rules in combination with other construc-
tors have encoded expressive rule-based reasoning, and in fact many of the rules in
those configuration system required Classic’s more sophisticated rule representa-
tion system. The examples we have seen in this chapter only use a simple form of
if-then rules. For a more detailed discussion of how powerful these rules can be in
practice, see [Borgida et al., 1996].

Description logics are not required of course in order to capture rule representation
and reasoning, this example simply shows that they can be a convenient technique
for capturing rules and reasoning with them.

12.2.3 Active inference

Description logics deduce logical consequences of information and are thus said to
provide active inference. In fact, one of the typical patterns of inference observed
in many description logic-based configuration systems includes

• Asserting new information about an existing term

• Recognizing that the updated term is an instance of a class

• Firing a rule on the term that is associated with the class

• Propagating information from the updated term to related terms



Configuration 405

For example, lets consider MY-HTS again. Let it have a hasTelevision slot filled
with a particular television TV-11. Once it is asserted that the user is willing to
pay more than 8000 dollars for this system, it is recognized to be an instance of the
HighQualSystem. The rules associated with that concept fire and now it becomes
an instance of something that has a television diagonal minimum of 50 inches (or
possibly a high definition television with a smaller diagonal) and a television price
of a minimum of 1000 dollars. These restrictions are propagated onto TV-11.

This kind of deduction chain comprises over 50% of the inferences that are done
in the stereo configurator example. In this manner, users only need to specify a
small number of restrictions on their system and they can have a large number of
deductions performed for them.

It should be noted that this particular example configurator was built on a de-
scription logic that did not contain default reasoning. Some description logics have
been expanded to include default reasoning (i.e., if it is not known to be otherwise,
use the default rule) [Padgham and Zhang, 1993; Baader and Hollunder, 1995a;
Quantz and Royer, 1992]. For example, if a manufacturer has not been specified
for a television, use Sony as the manufacturer. If the underlying formalism had a
default representation, this would have been used.

As the demonstration system was encoded, the stereo configurator used two sets
of concepts on which to hang rules - a concept for all provably correct rules (such as
power compatibility) and another concept for the default rules, called a “guidance”
concept (for more subjective rules such as minimum prices). The deployed config-
urators on which this system was based actually used defaults as completion—at
a particular point in the specification input process, if information is unknown,
then “complete” it using the “default” or subjective rules [McGuinness and Wright,
1998b]. This provided one very simple method of implementing a kind of “default”
as completion that can be viewed as one of the simplest forms of default reasoning.

12.2.4 Explanation

Customer help desk staff need to be able to help users understand potentially every-
thing about a configuration specification and the final parts list. In fact, the Prose
family of configurators faced extinction had it not been able to respond with a full
explanation capability. It was evident that consumers needed to be able to find
out why some particular part was in their final system, why it had the particular
value restrictions it did, what the possible alternatives were, and from what portion
of the specification this information had been derived. In this simple example, a
customer might want to find out why the television in her final system costs over
1000 dollars or why it has a particular minimum diagonal requirement. The expla-
nation would be that a high quality system was requested and high quality systems



406 D. L. McGuinness

include a suggested minimum diagonal size and a minimum price on their television
components.

The demonstration system allows customers to point to particular components
and ask questions about everything that has been deduced about them. It also
anticipated the most common explanation questions that users asked and provided
pull down menu items that were dynamically generated based on the item a user
was pointing to to generate explanation questions that a user could just click on
to ask quickly. An extensive explanation foundation was designed for the under-
lying description logic-based system in order to support that [McGuinness, 1996;
McGuinness and Borgida, 1995]. The explanation system provides a proof theoretic
foundation for explaining any deduction in terms of proof rules and arguments. It
also provides an automatic followup capability that generates the questions that
would lead to this inference being deducible. The followup question generation
was found to be needed since user studies showed that users wanted fairly simple
explanations along with the capability to ask followup questions. Further stud-
ies found that users appreciated help in generating syntactically correct followup
questions that made sense given the previous question that was just asked. The
followup questions were automatically generated from the model-theoretic form of
the explanation.

The basic explanation structure was originally done for a normalize-compare
description logic-based system but has since been used as the foundation for a
tableaux-based description logic [Borgida et al., 1999] and also a model-elimination
theorem prover in an implementation of ATP at Stanford University.

Explanation in general is one of the strengths of description logics as opposed
to some of the other configuration approaches. It may be much more difficult to
explain a line of reasoning in a typical constraint-based approach than it is to
filter and prune an inference rule based theorem prover such as a description logic
prover. Filtering object presentations and explanations in description logics has
also been addressed in [McGuinness, 1996; Borgida and McGuinness, 1996; Baader
et al., 1999a]. Also, it has been argued elsewhere [McGuinness and Patel-Schneider,
1998; Brachman et al., 1999] that explanation is a requirement for many kinds of
applications, but is particularly important for configuration systems [McGuinness
and Wright, 1998a].

Recent work has been done in constraint-based approaches that starts to address
explanation in constraint-based configurators. While progress is being made, the
more interesting constraint-based explanation systems [Freuder et al., 2001] utilize
extensive domain specific information and are not generic solutions to the problem
of understanding explanations.



Configuration 407

12.2.5 Evolving specifications

In many common configuration scenarios, a user begins with an incomplete set of
specifications for an end product. Configuration applications built to support users
should take input of the known specifications (in an order that is convenient for the
user and not just an order convenient for the program), and then solicit remaining
required input.

A configurator system should allow mixed initiative input - where the user may
input the specifications the user is aware of at a particular time and the system
should request input that it needs to meet a task. Description logics can allow users
to input descriptions of end products or individual components at any time. For
example, in the home theatre system, a user could specify information about the
entire system—such as a requirement for the entire system to be high quality—and
also could specify information about any of the particular components that she
knew about at a particular time. The user might, for example, prefer to buy a
particular model television or might want to set a diagonal size and a number of
other constraints on the television however may not know anything at the moment
about the restrictions on the DVD player.

A user interface, such as the one depicted in the stereo example, allowed a user to
choose components from drop down menus. The drop down menus were generated
on the fly in order to take into account all of the information that the system
currently had about a component. This was used as a query to the database of
all components that met that specification. Thus, the user was kept from choosing
many components that would be incompatible with the system that was configured
to date.

The user could also browse the current configuration and delete any requirements
that were stated. (The user was not allowed to delete requirements that were
inferred, however the user was allowed to ask how a particular requirement was
deduced, thereby discovering the source of that requirement.) Once a requirement
was deleted, then new drop down menus were generated to include components that
met the current set of specifications instead of the previous set.

This architecture provides a great deal of flexibility for incrementally evolving
(sometimes non-monotonically evolving) specifications. It worked well to provide
users with menus of choices that were recalculated on an as needed basis with
updated component lists that meet the current specifications that were stated or
implied about any component.

For example, if a user stated that she wanted a high quality stereo system and then
decided to choose an amplifier for the system, the configurator would only present
options for amplifiers that had been determined to be high quality. Description
logics are not the only modeling scheme that support evolving specifications, but



408 D. L. McGuinness

this section attempts to point out that they can be used rather easily to support
evolving configuration specifications.

12.2.6 Extensible schemas

Many configuration applications find that information about components is con-
tinually updated. It is not always the case that simple data about components is
updated but sometimes properties of the components change or new properties are
discovered after an application has been encoded. Thus, it becomes important to
work with a schema or a description of a component that can be updated. For
example, in our home theatre application, when we began development, DVD play-
ers were not in the consumer market. It later became common for home theatre
systems to include DVD players, thus our schema needed to be extended with the
new class - DVDPlayer - as well as with roles that were appropriate for DVD players.

This need for updatable and configurable schemas is sometimes a requirement
for design. For example, in AT&T evaluation of software, one criteria is extensible
schemas. Our experience in the deployed Prose and Questar configurator family
was that products were extended often in practice.

12.2.7 Reasoning for incomplete information

Many configuration specifications are almost by necessity incomplete when input
initially. In large systems, it may be common for one person who may be an expert
in one area to input specifications for that area while another person who is an
expert in another area may update the specification later. For example, in a two
person household, one person may be much more literate in audio quality and
thus that person may input the requirements for speakers and another person may
have more interest and knowledge in video displays, thus that person may input
specifications for the television (along with its input and output requirements). It
may be important to allow specification to be done across multiple sessions as well.

One would not want a configurator that could not make deductions until all of
the input requirements have been presented. For example, in the stereo system,
one would want a configurator that could infer the implications of the speaker
restrictions on say minimum power requirements for the amplifier, even though the
television specifications have not been input yet.

Description logics have been demonstrated to be useful at determining logical
consequences of information even when it is incomplete. They can also be used to
determine information that is still required. For example, they can determine that
two speakers need to be input as parts in the parts list before the configuration can
be considered complete. Thus, it is not enough to say that two high quality main



Configuration 409

speakers are required but the parts list actually needs to have the actual speakers
chosen before the job is considered complete.

In the home theatre application, there was a one-pane display dedicated to show-
ing which final component choices still remained before a configuration could be
considered completed. The display could be used to view the current parts already
implied and/or chosen along with the other components yet to be chosen. The other
components could be clicked on to obtain the current description of the component
so that a user could view what had been derived to date about that component.
The application allowed a user to save a partial specification of a configuration for
further requirements to be input at another point. The application also allowed a
user to “complete” the configuration at any point which would force the system to
make consistent decisions for remaining underconstrained components. The user
could also inspect individual component choices and click on them and see a pull
down menu list of alternative choices that the system could have made. The user
could also click on the component and view a description of the constraints that the
application had determined must hold of that component. The description of the
component was what was used to query the knowledge base about components that
would fit the characteristics. The description could also be passed along to another
user (or another application) so that it could see what constraints had been deduced
so far and then have that other user (or application) either add new constraints or
make the ultimate product choice, thereby facilitating collaborative configuration.

12.2.8 Inconsistency detection

Configuration applications should minimize the chances for users to generate incon-
sistent specifications. The stereo configurator, for example, uses the information
that can be deduced about any particular component in order to form a query to
the database about possible components. This greatly limits the chances that a
user may choose a component in their system that will cause an inconsistent spec-
ification to result. The deployed application did not take a greater step however
before choosing to put a component on a pull down list. It did not make the hypo-
thetical choice of the component for the user and then check to see if the remaining
components that were still unspecified could be completed with a component in the
database. (Of course, this would be an exponential search with the remaining com-
ponents yet to be specified.) Thus, the deployed example, could still allow a user to
generate an inconsistent specification—the application just made it more difficult
for this to happen. The back end reasoning system was required to determine when
an incremental specification became inconsistent.

Sometimes users of other deployed configurators generate a large set of constraints
and want to input them into other (connected) configuration applications. Thus one



410 D. L. McGuinness

additional requirement on a user friendly configurator (that is expected to interact
with other configuration applications) is for the reasoner to take input constraints
and determine if they are inconsistent.

Reasoners may choose different methods of handling inconsistencies. A require-
ment for a configuration system is that the underlying reasoner must be able to
identify the inconsistency and notify the user. A helpful reasoner will also support
the user by allowing her to ask how the inconsistency was deduced. The reasoner
could also give the user the option to ”roll-back” the specification to the last consis-
tent state. For example, the Classic knowledge representation system required its
information to be consistent, thus once an inconsistency was detected, it disallowed
the last statement that generated the inconsistency (maintaining a separate error
state for debugging support) and then rolled-back to the last consistent state. This
was common for early description logic-based systems. Today however, description
logics do not necessarily require consistent axioms to function. They may allow
a set of inconsistent axioms to be input and then configurators can be built that
utilize the description logic to identify if a description is satisfiable. This model of
allowing inconsistent input with a user-identified check point may be a model that
supports collaboration and web-oriented development most naturally.

12.2.9 Modularity

In large systems, it is important to allow multiple people to work on specifications
in what appears to be a simultaneous environment. In Prose for example, care
was taken to design a set of classes and roles that a number of developers could
use. Multiple users were then allowed to work on specifications of different portions
of the configuration information simultaneously with previously defined upper level
classes and roles for their use in specifying more specific classes. When the users
were finished with their particular component descriptions, loads were done to see
if the the two portions interacted. This model of individual users being in charge
of specific portions of the ontology while possibly one chief ontologist is in charge
of the upper level ontology is not uncommon. Cycorp, for example, publishes its
upper level ontology which is maintained by a core Cycorp group while many other
people develop more specialized mid-level ontologies. VerticalNet also has a number
of ontologies with many different authors of specific ontologies that use an upper
level ontology that was maintained by a core ontology team. Description logics
can be used to support such modeling with Prose being an example of one such
development.

Another notion of modularity support can be considered with environmental sup-
port features. Some systems such as OntoBuilder [Das et al., 2001] at VerticalNet
have been built to support multiple users working on the same portion of an ontol-



Configuration 411

ogy in a more integrated manner. VerticalNet’s system allows users to be notified
if someone is modifying a portion of the ontology that they are using. While On-
toBuilder does not have a description logic back end, its input language is quite
similar to OIL [Fensel et al., 2001] and thus it is not a hard task to imagine that
an OntoBuilder-like system could be integrated with today’s description logic
systems.

12.2.10 Maintainability

Once systems are used for a long time period or are used enough so that they
require support from someone other than their original author, maintainability be-
comes an issue. We have used examples from the stereo configurator for all of
the other sections but in this section, we will draw from our experience with the
Prose/Questar family of configurators. The stereo configurator has been up on
the web for some years yet it has not had many maintenance requirements because
it is a demonstration system that is not updated when new stereo information be-
comes available. However, deployed configurators typically have help desk support
and require data (and sometimes schema) updates.

There are at least three components of maintenance that require some thought
when planning a configurator:

• product data updates
• product specification updates
• help desk support

The first is the simplest. Typically product data requires updates over time. Sim-
ple things like prices and availability need updating and sometimes small updates
are made with revisions. Typically, this kind of information is not hard to update
- someone who does not know much about the encoding can typically find a way
to do things such as updating price fields in many applications - whether they are
description logic-based or not. Description logics may help support this require-
ment more than some since they are aimed at working with incomplete information
(e.g., Section 12.2.7), thus updates from incomplete to more complete information
are natural for DL-based systems to handle. Similarly, an object-oriented modeling
scheme may make updates simpler, but this area alone would not be enough to
drive a potential user to a description logic-based approach.

The second issue of updates to product specification might be viewed by a
database designer as a schema update. This kind of information is typically more
challenging to update in applications since it requires product specification descrip-
tions and not just simple data changes. It could be simple requiring say a change
to the range of a field, for example, possibly an age range may move from 18–65



412 D. L. McGuinness

to 18–70. Similarly, a business that used to accept only US currency may now ac-
cept other currencies, such as Euros, thereby requiring price fields to require value
restriction updates. More complicated product specification updates may be done
when new components become available (thus requiring someone to model the new
components and their features). These types of specification updates are facilitated
in description logics by the kinds of features that we noted in Sections 12.2.6, 12.2.5,
12.2.1, and 12.2.9.

The third issue of help desk support has been noted as a strength of description
logic-based systems. One of the goals with the Prose configurator systems was to
allow the help desk personnel to appear to perform at a level above the amount
of training they had on individual products. The enabling infrastructure toolset
was to provide information to the help desk staff at the time they needed it in real
time (instead of requiring them to have been previously trained on products so that
they could answer questions from knowledge that they had learned instead of from
knowledge that they could look up on demand).

The tools were to allow them to explain any of the deductions that the system
made when customers called in asking why something was (or was not) in their
configuration and also allowed them to answer questions about why configurations
were (or were not) valid. This was most facilitated by the functionality described in
Section 12.2.4 but also by others such as Section 12.2.8. Similarly, they could answer
hypothetical questions aimed at answering questions such as “what would happen if
I chose component X instead of component Y in my configuration”. The goal was
to meet individual customer needs without requiring engineering support to answer
such questions. Our claim is that it is a combination of the strengths of description
logics as discussed in the previous sections that help support maintainability of the
applications and in fact, help support maintainability by people who have not taken
classes in description logics or knowledge representation.

12.3 The Prose and Questar family of configurators

The longest-lived and most prolific family of description logic-based configurators
has been the Prose and Questar product line [Wright et al., 1993; McGuinness
and Wright, 1998b]. AT&T began development on configuration problems in 1988 in
response to business requests for help in the streamlining of the Engineer, Furnish,
and Install process. The goal in the process is to solicit a specification request from
the customer through the sales process, and then engineer a solution that can be
“furnished” and of course manufactured and delivered to the customer in a timely
and cost effective manner. The initial goals of the project were to decrease the
time from specification to installation and to minimize the impact of contradictions
in the specifications and mistakes in the engineering. The initial configurator was



Configuration 413

built for a fiber optic transmission system (the FT Series G) although the initial
deployment was for a digital cross-connect system (the DACS IV-2000).

The initial configurator was successful enough that a family of configurators was
built around it. The history of development proceeded moving from more research
involvement to more development involvement. AT&T’s research division collab-
orated with developers in order to build the initial system. Researchers helped
generate and critique the initial conceptual models and programming effort. De-
velopers generated the initial system but with the help of interactive assistance
from research. As the product evolved, project needs emerged for developer inde-
pendence and an environment was produced that allowed domain knowledgeable
people to input configuration rules in a language that was comfortable to them.
Developers had the lead responsibility in the initial deployment with the assistance
of research but in the second through seventeenth system, developers had the lead
and required little assistance from research for either generation or maintenance of
individual configurators. As the development environment evolved, the developers
saw much less of the description logic back end—essentially the description logic
back end verified input and deduced conclusions and was otherwise hidden behind
the interface of the system.

There are a few points worth noting about this family of applications. First,
the configurator family has shown longevity with some configurators deployed a
decade after work began. Second, the majority of the generation and maintenance
of the configurators was done by people who knew very little about description
logics (thus showing empirical evidence that applications do not require PhDs in
description logics to build and maintain them). An evolution interface was devel-
oped by domain literate developers aimed at users who knew the products but did
not know description logics or sometimes computer science at all. This interface
allowed users to both maintain configurators and also to generate new configura-
tors in the same product family. Third, there is a consensus that the description
logic-based approach both facilitates conceptual modeling (e.g., [McGuinness and
Wright, 1998b]), and also makes maintenance much easier. Ford Motor company has
also stated similar findings with its long-lived description logic-based configurator
applications.

12.4 Summary

We have introduced the problem of configuration, describing briefly the nature of
the problem and why many communities consider it important. We have described
properties inherent in the problem that make it an area for which one might consider
description logic-based approaches. We have provided examples of all of properties
in the setting of a stereo configurator, mentioning how a description logic-based



414 D. L. McGuinness

approach was used to solve the problem. We made parallel connections to the much
larger configurators used for telecommunications equipment that also included the
same issues and had description logic-based solutions.

We have also introduced the largest family of description logic-based
configurators—the Prose/Questar family of systems (noting also that at least
one other commercial configurator at Ford Motor company also has a similar
life-span and a similar description logic-based approach). We observe that the
Prose/Questar configurator family has been in continuous use for over a decade
and has configured billions of dollars of equipment. We finally note that the com-
mercial configuration examples with long histories state the the description logic
approach has made the problems of conceptual modeling and configurator main-
tenance less problematic. Additionally, we speculate that this general architecture
that meets the list of configuration needs might also be used in problem areas with
similar needs.

Acknowledgements

While of course all errors in the chapter are the responsibility of the author, the
chapter has been enhanced due to contributions from a number of people. Much of
the discussion has been in the setting of either Prose/Questar or Classic work
that has been done in conjunction with Jon Wright, Lori Alperin Resnick, Peter
Patel-Schneider, Ron Brachman, Alex Borgida, Charles Isbell, Elia Weixelbaum,
Gregg Vesonder, Harry Moore, Pat Saleh, Charlie Foster, Chris Welty, Matt Parker,
and a number of other important contributors. Also, Nestor Rychtyckyj provided
many valuable comments on a previous version of this paper.


