
Appendix 1

Description Logic Terminology
Franz Baader

Abstract

The purpose of this appendix is to introduce (in a compact manner) the syntax and
semantics of the most prominent DLs occurring in this handbook. More information
and explanations as well as some less familiar DLs can be found in the respective
chapters. For DL constructors whose semantics cannot be described in a compact
manner, we will only introduce the syntax and refer the reader to the respective
chapter for the semantics. Following Chapter 2 on Basic Description Logics, we
will first introduce the basic DL AL, and then describe several of its extensions.
Thereby, we will also fix the notation employed in this handbook. Finally, we will
comment on the naming schemes for DLs that are employed in the literature and
in this handbook.

A1.1 Notational conventions

Before starting with the definitions, let us introduce some notational conventions.
The letters A,B will often be used for atomic concepts, and C, D for concept de-
scriptions. For roles, we often use the letters R, S, and for functional roles (features,
attributes) the letters f, g. Nonnegative integers (in number restrictions) are often
denoted by n,m, and individuals by a, b. In all cases, we may also use subscripts.
This convention is followed when defining syntax and semantics and in abstract
examples. In concrete examples, the following conventions are used: concept names
start with an uppercase letter followed by lowercase letters (e.g., Human, Male), role
names (also functional ones) start with a lowercase letter (e.g., hasChild, marriedTo),
and individual names are all uppercase (e.g., CHARLES, MARY).

495



496 F. Baader

A1.2 Syntax and semantics of common Description Logics

In this section, we introduce the standard concept and role constructors as well as
knowledge bases. For more information see Chapter 2.

A1.2.1 Concept and role descriptions

Elementary descriptions are atomic concepts and atomic roles (also called concept
names and role names). Complex descriptions can be built from them inductively
with concept constructors and role constructors. Concept descriptions in AL are
formed according to the following syntax rule:

C, D −→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)
C uD | (intersection)
∀R.C | (value restriction)
∃R.> (limited existential quantification).

Following our convention, A denotes an atomic concept and C,D denote concept
descriptions. The role R is atomic since AL does not provide for role constructors.

An interpretation I consist of a non-empty set ∆I (the domain of the interpre-
tation) and an interpretation function, which assigns to every atomic concept A a
set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I . The in-
terpretation function is extended to concept descriptions by the following inductive
definitions:

>I = ∆I

⊥I = ∅
¬AI = ∆I \AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI}
(∃R.>)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI}.

There are several possibilities for extending AL in order to obtain a more ex-
pressive DL. The three most prominent are adding additional concept constructors,
adding role constructors, and formulating restrictions on role interpretations. Be-
low, we start with the third possibility, since we need to refer to restrictions on roles
when defining certain concept constructors. For these extensions, we also introduce
a naming scheme. Basically, each extension is assigned a letter or symbol. For
concept constructors, the letters/symbols are written after the starting AL, for role



Description Logic Terminology 497

Table A1.1. Some Description Logic concept constructors.

Name Syntax Semantics Symbol

Top > ∆I AL

Bottom ⊥ ∅ AL

Intersection C uD CI ∩DI AL

Union C tD CI ∪DI U

Negation ¬C ∆I \ CI C

Value restriction ∀R.C {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI} AL

Existential quant. ∃R.C {a ∈ ∆I | ∃b. (a, b) ∈ RI ∧ b ∈ CI} E

Unqualified > nR {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| ≥ n}
number 6nR {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| ≤ n} N
restriction = nR {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI}| = n}

Qualified > nR.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}
number 6 nR.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n} Q
restriction = nR.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| = n}

Role-value- R ⊆ S {a ∈ ∆I | ∀b.(a, b) ∈ RI → (a, b) ∈ SI}
map R = S {a ∈ ∆I | ∀b.(a, b) ∈ RI ↔ (a, b) ∈ SI}

Agreement and u1
.= u2 {a ∈ ∆I | ∃b ∈ ∆I . uI1 (a) = b = uI2 (a)} F

disagreement u1 6
.= u2 {a ∈ ∆I | ∃b1, b2 ∈ ∆I . uI1 (a) = b1 6= b2 = uI2 (a)}

Nominal I II ⊆ ∆I with |II | = 1 O

constructors, we write the letters/symbols as superscripts, and for restrictions on the
interpretation of roles as subscripts. As an example, the DL ALCQ−1

R+ extends AL
with the concept constructors negation (C) and qualified number restrictions (Q),
the role constructor inverse (−1), and the restriction that some roles are transitive
(R+).

Restrictions on role interpretations

These restrictions enforce the interpretations of roles to satisfy certain properties,
such as functionality and transitivity. We consider these two prominent examples
in more detail. Others would be symmetry or connections between different roles.1

(i) Functional roles. Here one considers a subset NF of the set of role names
NR, whose elements are called features. An interpretation must map features

1 One could also count role hierarchies as imposing such restrictions. Here we will, however, treat role
hierarchies in the context of knowledge bases.



498 F. Baader

Table A1.2. Concrete syntax of concept constructors.

Name Concrete syntax Abstract syntax

Top TOP >

Bottom BOTTOM ⊥

Intersection (and C1 · · · Cn) C1 u · · · u Cn

Union (or C1 · · · Cn) C1 t · · · t Cn

Negation (not C) ¬C

Value restriction (all R C) ∀R.C

Limited existential quantification (some R) ∃R.>

Existential quantification (some R C) ∃R.C

At-least number restriction (at-least n R) > nR

At-most number restriction (at-most n R) 6 nR

Exact number restriction (exactly n R) = nR

Qualified at-least restriction (at-least n R C) > nR.C

Qualified at-most restriction (at-most n R C) 6 nR.C

Qualified exact restriction (exactly n R C) = nR.C

Same-as, agreement (same-as u1 u2) u1
.= u2

Role-value-map (subset R1 R2) R1 ⊆ R2

Role fillers (fillers R I1 · · · In) ∃R.I1 u · · · u ∃R.In

One-of (one-of I1 · · · In) I1 t · · · t In

f to functional binary relations fI ⊆ ∆I × ∆I , i.e., relations satisfying
∀a, b, c.fI(a, b)∧fI(a, c) → b = c. Sometimes functional relations are viewed
as partial function, and thus one writes fI(a) = b rather than fI(a, b). AL
extended with features is denoted by ALf .

(ii) Transitive roles. Here one considers a subset NR+ of NR. Role names R ∈
NR+ are called transitive roles. An interpretation must map transitive roles
R ∈ NR+ to transitive binary relations RI ⊆ ∆I ×∆I . AL extended with
transitive roles is denoted by ALR+ .

Concept constructors

Concept constructors take concept and/or role descriptions and transform them into
more complex concept descriptions. Table A1.1 shows the syntax and semantics of
common concept constructors. In order to have them all in one place, we also repeat



Description Logic Terminology 499

Table A1.3. Some Description Logic role constructors.

Name Syntax Semantics Symbol

Universal role U ∆I ×∆I U

Intersection R u S RI ∩ SI u

Union C tD RI ∪ SI t

Complement ¬R ∆I ×∆I \RI ¬

Inverse R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI} −1

Composition R ◦ S RI ◦ SI ◦

Transitive closure R+ ⋃

n≥1(R
I)n +

Reflexive-transitive closure R∗
⋃

n≥0(R
I)n ∗

Role restriction R|C RI ∩ (∆I × CI) r

Identity id(C) {(d, d) | d ∈ CI} id

the ones fromAL, minus atomic negation and limited existential quantification since
they are special cases of negation and existential quantification.

Some explanatory remarks are in order. The symbols u1, u2 in the agreement
constructor stand for chains of functional roles, i.e., u1 = f1 · · · fm and u2 = g1 · · · gn

where n,m ≥ 0 and the fi, gj are features. The semantics of such a chain is given by
the composition of the partial functions interpreting its components, i.e., uI1 (a) =
fIn (· · · fI1 (a) · · ·). Nominals (or individuals) in concept expression are interpreted
as singleton sets, consisting of one element of the domain. We assume that names
for individuals come from a name space disjoint from the set of concept and role
names. Since role-value-maps cause undecidability and thus are no longer used in
DL systems, there is no special symbol for them in the last column of Table A1.1.

Many DL systems employ a Lisp-like concrete syntax. Table A1.2 introduces this
syntax and gives a translation into the abstract syntax introduced in Table A1.1.

Role constructors

Role constructors take role and/or concept descriptions and transform them into
more complex role descriptions. Table A1.3 shows the syntax and semantics of
common role constructors.

The symbol ◦ denotes the usual composition of binary relations, i.e.,

RI ◦ SI = {(a, c) | ∃b. (a, b) ∈ RI ∧ (b, c) ∈ SI}.



500 F. Baader

Table A1.4. Concrete syntax of role constructors.

Name Concrete syntax Abstract syntax

Universal role top U

Intersection (and R1 · · · Rn) R1 u · · · uRn

Union (or R1 · · · Rn) R1 t · · · tRn

Complement (not R) ¬R

Inverse (inverse R) R−

Composition (compose R1 · · · Rn) R1 ◦ · · · ◦Rn

Transitive closure (transitive-closure R) R+

Reflexive-transitive closure (transitive-reflexive-closure R) R∗

Role restriction (restrict R C) R|C
Identity (identity C) id(C)

Iterated composition is denoted in the form (RI)n. To be more precise,

(RI)0 = {(d, d) | d ∈ ∆I} and (RI)n+1 = (RI)n ◦RI .

Transitive and reflexive-transitive closure are the only constructors among the ones
introduced until now that cannot be expressed in first-order predicate logic.

The Lisp-like concrete syntax for role constructors can be found in Table A1.4.

A1.2.2 Knowledge bases

A DL knowledge base usually consists of a set of terminological axioms (often called
TBox) and a set of assertional axioms or assertions (often called ABox). Syntax
and semantics of these axioms can be found in Table A1.5. An interpretation I is
called a model of an axiom if it satisfies the statement in the last column of the
table.

An equality whose left-hand side is an atomic concept (role) is called concept
(role) definition. A finite set of definitions is called a terminology or TBox if the
definitions are unambiguous, i.e., no atomic concept occurs more than once as left-
hand side. Axioms of the form C v D for a complex description C are often called
general inclusion axioms. A set of axioms of the form R v S where both R and S
are atomic is called role hierarchy. Such a hierarchy obviously imposes restrictions
on the interpretation of roles. Thus, the fact that the knowledge base may contain
a role hierarchy is sometimes indicated by appending a subscript H to the name of
the DL (see “Restrictions on role interpretations” above).



Description Logic Terminology 501

Table A1.5. Terminological and assertional axioms.
Name Syntax Semantics

Concept inclusion C v D CI ⊆ DI

Role inclusion R v S RI ⊆ SI

Concept equality C ≡ D CI = DI

Role equality R ≡ S RI = SI

Concept assertion C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Table A1.6. Concrete syntax of axioms.
Name Concrete syntax Abstract syntax

Concept definition (define-concept A C) A ≡ C

Primitive concept introduction (define-primitive-concept A C) A v C

General inclusion axiom (implies C D) C v D

Role definition (define-role R S) R ≡ S

Primitive role introduction (define-primitive-role R S) R v S

Concept assertion (instance a C) C(a)

Role assertion (related a b R) R(a,b)

The concrete Lisp-like syntax distinguishes between terminological axioms with
atomic concepts as left-hand sides and the more general ones. Following the con-
vention mentioned at the beginning of this appendix, A denotes an atomic concept.
In the table, R is also meant to denote an atomic role.

A1.3 Additional constructors

Here we mention some of the additional constructors that occur somewhere in the
handbook. For most of them, the semantics cannot be described in a compact
manner, and thus we refer to the respective chapter for details.

A1.3.1 Concept and role constructors

Many additional constructors are introduced in Chapter 6. In DLs with concrete do-
mains one can us concrete predicates to constrain fillers of feature chains, similarly
to the use of the equality predicate in feature agreements. For example, if hasAge is



502 F. Baader

a feature and ≥18 the unary concrete predicate consisting of all nonnegative integers
greater than or equal to 18, then ∃hasAge.≥18 describes the individuals whose age
is greater than or equal to 18. In general, an existential predicate restriction is of
the form

∃(u1, · · · , un).P,

where P is an n-ary predicate of the underlying concrete domain and u1, . . . , un are
feature chains. One can also use concrete domain predicates to define new roles.
For example, ∃(hasAge)(hasAge).> consists of all pairs of individuals having an age
such that the first individual is older than the second one. The general form of such
a complex role is

∃(u1, . . . , un)(v1, . . . , vm).P,

where P is an (n + m)-ary predicate of the underlying concrete domain and
u1, . . . , un, v1, . . . , vm are feature chains.

In modal extensions of description logics, one can apply modal operators to con-
cepts and/or roles, i.e., if 2 is such a modal operator, C is a concept, and R is a
role, then

2C and 2R

is a concept and a role, respectively. Similarly, one can also use diamond operators
3 to obtain new concepts and roles. A special such modal operator is the epistemic
operator K, which can be used to talk about things that are known to the knowledge
base.

Chapter 5 introduces several additional constructors. Least and greatest fixpoint
semantics for cyclic terminologies (see Chapter 2) can be generalized by introducing
fixpoint constructors directly into the description language. Let X be a concept
name and C a concept description containing the name X. Then

µX.C and νX.C

is a new concept description respectively obtained by applying the least and the
greatest fixpoint constructor to C. To ensure that the least and the greatest fixpoint
exist, one must restrict C to be syntactically monotonic, i.e., every occurrence of
X in C must be in the scope of an even number of complement operators. For
example, given an interpretation ManI of Man and hasChildI of hasChild, the concept
νMomo.(Man u ∀hasChild.Momo) looks for the greatest interpretation MomoI of
Momo such that MomoI = (Man u ∀hasChild.Momo)I . It is easy to see that this is
the set of all men having only male offspring (see Chapter 2 for the corresponding
example with a cyclic TBox).

Chapter 5 also considers the DL DLR, in which the restriction to at most binary



Description Logic Terminology 503

predicates is no longer enforced. If R is an n-ary predicate, i ∈ {1, . . . , n}, and k is
a nonnegative integer, then

∃[$i]R

denotes the concept collecting those individuals that occur as ith component in
some tuple of R, and

≤ k [$i]R

denotes the concept collecting those individuals d for which the predicate R contains
at most k tuples whose ith component is d. Conversely, if C is a concept, n a
nonnegative integer, and i ∈ {1, . . . , n}, then

($i/n : C)

denotes the n-ary predicate consisting of the tuples whose ith component belongs
to C. The DL DLR also allows for Boolean operators on both concepts and predi-
cates.1

A1.3.2 Axioms

In addition to the semantics for terminological axioms introduced above, Chapter 2
also considers fixpoint semantics for cyclic TBoxes.

Chapter 6 introduces several ways of extending the terminological and the as-
sertional component of a DL system. In DLs with concrete domains one can use
concrete predicates also in the ABox in assertions of the form

P (x1, . . . , xn),

where P is an n-ary predicate of the underlying concrete domain and x1, . . . , xn are
names for concrete individuals.

In some modal extensions of description logics, one can apply modal and Boolean
operators also to terminological and assertional axioms: if ϕ,ψ are axioms, then so
are

ϕ ∧ ψ, ¬ϕ, 2ϕ.

In probabilistic extensions of description logics, one can use probabilistic termi-
nological axioms of the form

P(C|D) = p,

which state that the conditional probability for an object known to be in D to
belong to C is p.
1 Note, however, that negation on predicates has a non-standard semantics (see Chapter 5 for details).



504 F. Baader

The integration of Reiter’s default logic into DLs yields terminological defaults of
the form

C(x) : D(x)
E(x)

,

where C,D, E are concept descriptions (viewed as first-order formulae with one free
variable x). Intuitively, such a default rule can be applied to an ABox individual
a, i.e., E(a) is added to the current set of beliefs, if its prerequisite C(a) is already
believed for this individual and its justification D(a) is consistent with the set of
beliefs.

Rules of the form

C ⇒ E

(as introduced in Chapter 2) can be seen as a special case of terminological defaults
where the justification is empty. Their intuitive meaning is: “if an individual is
known to be an instance of C, then add the information that it is also an instance
of E.”

A1.4 A note on the naming scheme for Description Logics

In Section A1.2 we have introduced a naming scheme for DLs, which extends
the naming scheme for the AL-family introduced in Chapter 2 by writing let-
ters/symbols for role constructors as superscripts, and for restrictions on the in-
terpretation of roles as subscripts. The reason was that this yields a consistent
naming scheme, which distinguishes typographically between the three different
possibilities for extending the expressive power of AL.

In the literature, and also in this handbook, other naming schemes are employed
as well. One reason for this, in addition to the fact that such schemes have evolved
over time, is that it is very hard to pronounce a name like ALCQ−1

R+ . We will here
point out the most prominent such naming schemes.

The historically first scheme is the one for the AL-family introduced in Chap-
ter 2, and extended in this appendix. However, in the literature the typographical
distinction between role constructors, concept constructors, and restrictions on the
interpretation of roles is usually not made. For example, many papers use I to
denote inverse of roles, R to denote intersection of roles, and H to denote role hier-
archies. Thus, ALCRI denotes the extension of ALC by intersection and inverse of
roles, and ALCH denotes the extension of ALC by role hierarchies. In some cases,
the letter F , which we employed to express the presence of feature agreements and
disagreements, is used with a different meaning. Its presence states that number
restrictions of the form 6 1R can be used to express functionality of roles.1 The
1 Unlike the restriction of R to be functional, which we express with a subscript f , this allows for local



Description Logic Terminology 505

subscript “trans” (or “reg”) is often employed to express the presence of union, com-
position, and transitive closure of roles (sometimes also including the identity role).
The Greek letter µ in front of a language name, like in µALC, usually indicates the
extension of this DL by fixpoint operators.

All members of theAL-family includeAL as a sublanguage. In some cases on does
not want all the constructors of AL to be present in the language. The DL FL− is
obtained from AL by disallowing atomic negation, and FL0 is obtained from FL−
by, additionally, disallowing limited existential quantification. If these languages
are extended by other constructors, one can indicate this in a way analogous to
extensions of AL. For example, FL−U denotes the extension of FL− by union of
concepts.

All the DLs mentioned until now contain the concept constructors intersection
and value restriction as a common core. DLs that allow for intersection of con-
cepts and existential quantification (but not value restriction) are collected in the
EL-family. The only constructors available in EL are intersection of concepts and
existential quantification. Extensions of EL are again obtained by adding appropri-
ate letters/symbols.

In order to avoid very long names for expressive DLs, the abbreviation S was
introduced for ALCR+ , i.e., the DL that extends ALC by transitive roles. Prominent
members of the S-family are SIN (which extends ALCR+ with number restrictions
and inverse roles), SHIF (which extends ALCR+ with role hierarchies, inverse roles,
and number restrictions of the form 6 1R), and SHIQ (which extends ALCR+ with
role hierarchies, inverse roles, and qualified number restrictions). Actually, the DLs
SIN , SHIF , and SHIQ are somewhat less expressive than indicated by their
name since the use of roles in number restrictions is restricted: roles that have a
transitive subrole must not occur in number restrictions.

The DL DLR mentioned in the previous section also gives rise to a family of
DLs, with members like DLRreg , which extends DLR with union, composition,
and transitive closure of binary relations obtained as projections of n-ary predicates
onto two of their components.

functionality statements, i.e., R is functional at a certain place, but may be non-functional at other
places.


